Thérapie génique

Dossier réalisé en collaboration avec Anne Galy, directeur de recherche à l’Inserm (unité 951 Inserm / université d'Evry Val d'Essonne / Ecole pratique des hautes études, "Immunologie moléculaire et biothérapies innovantes", Généthon, Evry) - Mars 2014.

La thérapie génique utilise des acides nucléiques (ADN ou ARN) pour soigner ou prévenir des maladies. Selon la pathologie, cet objectif peut être atteint en délivrant aux cellules un gène fonctionnel qui remplace le gène défectueux à l’origine de la maladie (transgène), un gène à action thérapeutique, ou encore de l’ARN capable de réguler ou bloquer partiellement l’expression d’un gène altéré. Ces acides nucléiques sont le plus souvent transportés dans les cellules du patient grâce à un vecteur viral, mais ils peuvent également être injectés directement dans les cellules, sous forme d’ADN nu.

Cellule hématopoïétique corrigée par tranfert de gène © Inserm, Généthon/S. Charrier & D. Stockolm

Cellule hématopoïétique corrigée par tranfert de gène.

Le concept de thérapie génique date des années 1950 mais il s’est réellement concrétisé dans les années 90, avec les premiers essais conduits chez l’homme. En 1995, le premier patient traité de façon stable grâce à l’injection de cellules souches et de lymphocytes génétiquement modifiés (par une équipe milanaise) était atteint d’immunodéficience sévère de type ADA DICS. Un premier pas, transformé dans les années 2000 par un succès thérapeutique éclatant, obtenu à l’hôpital Necker chez les patients atteints d’une autre forme de déficit immunitaire (DICS de type X1) (voir plus loin). A l’époque, la thérapie génique était souvent présentée comme un moyen de lutter contre des maladies monogéniques (liée à la dysfonction d’un seul gène), en délivrant un gène "sain" capable de suppléer le gène "malade". En réalité, les indications sont beaucoup plus larges : plus de 1 800 essais cliniques de thérapie génique sont en cours à ce jour, dont 65 % en cancérologie, 10 % dans le domaine cardiovasculaire et 10 % seulement dans celui des maladies monogéniques (en particulier des immunodéficiences et des maladies hématologiques, mais également des pathologies comme la mucoviscidose). D’autres essais concernent des maladies infectieuses (tétanos, sida…), neurologiques (sclérose latérale amyotrophique, la sclérose en plaques ou encore les maladies d’Alzheimer et de Parkinson), ophtalmologiques (rétinite pigmentaire, glaucome, dégénérescence maculaire liée à l’âge) ou encore dans des maladies inflammatoires comme l’arthrose ou la polyarthrite rhumatoïde.

Environ trois quarts de ces essais sont des études de phase I ou II, qui évaluent la sécurité et l’efficacité des traitements testés. Les essais de phase III (qui permettent de statuer sur le rapport bénéfice/risque d’un nouveau traitement par rapport à un traitement de référence ou à un placebo) ne représentent que 4,5 % des études cliniques en cours. Néanmoins, ce chiffre ne cesse de progresser, avec de belles promesses par exemple dans le traitement de maladies monogéniques telles que l’amaurose congénitale de Leber, l’hémophilie B, la bêta-thalassémie ou dans le traitement du cancer, par transfert de lymphocytes T génétiquement modifiés.

Deux médicaments de thérapie génique sur le marché

Deux médicaments ont déjà surmonté tous les obstacles du développement clinique et sont déjà sur le marché. L’un d’eux, Gencidine est commercialisé en Chine depuis 2004. Il est indiqué dans le traitement de carcinomes de la tête et du cou. Il s’agit d’un gène suppresseur de tumeur (p53), véhiculé par un adénovirus. Plus de 10 000 patients ont été traités par ce médicament à ce jour, sans effet indésirable notable. En Europe, le premier médicament de thérapie génique a été approuvé fin 2012. Il s’agit du Glybera, injectable par voie intramusculaire, indiqué en cas de déficit familial en lipoprotéine lipase.

L’arrivée de ce médicament sur le marché européen a marqué un tournant décisif dans ce domaine médical : la thérapie génique n’est plus seulement une stratégie expérimentale étudiée en laboratoire. Elle peut aboutir à la mise au point de médicaments commercialisables, à condition de surmonter les contraintes règlementaires et industrielles (production de vecteurs et de transgènes dans des conditions standardisées et contrôlées, évaluation précise du rapport bénéfice-risque). Ce développement ne peut se faire sans le concours d’experts médicaux et industriels.

Les techniques diffèrent en fonction des indications

Les deux principales stratégies de thérapie génique : La thérapie génique consiste à modifier génétiquement des cellules d’un patient, pour soigner ou prévenir une maladie. Les protocoles utilisés varient en fonctions des indications et des objectifs thérapeutiques. Les cellules peuvent être modifiées in vivo, directement dans l’organisme du patient, ou ex vivo. Dans le second cas, des cellules souches sont prélevées chez le patient, modifiées en laboratoire, puis réinjectées. © Inserm, F. Koulikoff

Les deux principales stratégies de thérapie génique : La thérapie génique consiste à modifier génétiquement des cellules d’un patient, pour soigner ou prévenir une maladie. Les protocoles utilisés varient en fonctions des indications et des objectifs thérapeutiques. Les cellules peuvent être modifiées in vivo, directement dans l’organisme du patient, ou ex vivo. Dans le second cas, des cellules souches sont prélevées chez le patient, modifiées en laboratoire, puis réinjectées.

Les protocoles de thérapie génique varient en fonction des indications et des objectifs thérapeutiques à atteindre. Cependant, ils consistent toujours à modifier génétiquement les cellules du patients, ex vivo ou in vivo, de façon pérenne ou transitoire.

Ainsi, dans le cas d’une maladie monogénique qui affecte les cellules sanguines, des cellules souches hématopoïétiques (cellules à l’origine de l’ensemble des cellules sanguines) sont prélevées chez le patient lors d’une procédure qui s’apparente à une simple prise de sang. Ces cellules sont ensuite modifiées ex vivo : un vecteur (voir plus loin) est utilisé pour leur délivrer un transgène thérapeutique, puis elles sont placées en culture pendant quelques jours. Lorsque les cellules ainsi traitées commencent à exprimer le gène thérapeutique, elles sont finalement réinjectées au patient par perfusion veineuse. Les cellules modifiées vont alors proliférer dans l’organisme du patient et, à priori, contribuer à le soigner. L’avantage de cette approche est de modifier une population de cellules bien précise, sans risque de voir le vecteur pénétrer dans des organes non ciblés.

Cependant, il n’est pas toujours possible de prélever les cellules à corriger : cette stratégie ne peut être utilisée lorsqu’il s’agit de modifier des cellules cardiaques ou encore des neurones. Des protocoles prévoient alors l’injection du vecteur contenant le transgène directement dans les organes cibles, in vivo. Par exemple, dans le cas de l’amaurose de Leber, une dégénérescence rétinienne responsable de cécité, l’injection du vecteur contenant le transgène se fait directement dans la rétine. Avec cette stratégie, le risque est une dissémination du transgène moins maîtrisée.

Dans 2 % des essais de thérapie génique, la technique utilisée s’apparente à une chirurgie du gène : on parle de "saut d’exon". Cette approche consiste à amener la cellule à produire une version de la protéine déficiente chez le patient plus courte que la protéine normale mais fonctionnelle, en "sautant" la partie du gène qui porte la mutation à l’origine de la maladie. Le saut d’exon a été testé pour traiter la dystrophie de Duchenne chez l’animal (équipe d’Olivier Danos et Luis Garcia, Généthon, Evry), puis chez l’homme. Plusieurs essais cliniques sont en cours, notamment à l’Institut de Myologie à Paris. Cette technique s’applique particulièrement bien à cette maladie car le gène impliqué est trop grand pour être transporté par un vecteur de transfert de gène. Des applications potentielles sont envisagées dans d’autres pathologies génétiques.

Schéma de la technique du saut d'exon : Pour fabriquer une protéine, la cellule utilise les informations délivrées par un gène. Celui-ci est transcrit en une molécule d'ARN pré-messager, comportant des

Schéma de la technique du saut d'exon

Une autre approche, consistant à réparer le gène altéré directement au cœur de la cellule, est séduisante par sa précision. Elle éviterait certains effets indésirables associés au transfert d’un transgène. En pratique, cette stratégie s’appuie sur l’utilisation d’enzymes appelées "nucléases", capables de repérer des séquences particulières de l’ADN de part et d’autre de la mutation à réparer et de couper le chromosome à cet endroit précis. La machinerie cellulaire se met alors en marche pour réparer son ADN. Si une copie "saine" du gène à restaurer est alors délivrée dans la cellule, elle va servir de matrice de réparation, permettant ainsi la reconstitution d’un gène complet et fonctionnel. Cette technique fonctionne efficacement in vitro et les premiers essais conduits in vivo sont en cours. Une société française, Cellectis, est pionnière dans le domaine.

 

Le choix de l’acide nucléique thérapeutique dépend de l’indication

Dans le cadre du traitement du cancer, une piste privilégiée consiste à stimuler le système immunitaire du patient contre sa propre tumeur, de manière à faciliter la reconnaissance des cellules cancéreuses et leur élimination. Pour y parvenir, des essais ont par exemple consisté à prélever des lymphocytes T ou des cellules présentatrices d’antigènes de type dendritique chez les patients, à y introduire un gène codant pour une protéine impliquée dans la reconnaissance des cellules tumorales ou dans leur destruction (antigènes tumoraux, cytokines, gènes suppresseurs de tumeur ou encore enzymes suicides) et à réinjecter le tout dans l’organisme des patients. Les résultats sont globalement mitigés. Des améliorations restent à réaliser pour rendre les vecteurs utilisés plus immunogènes ou mieux contrôlables.

Dans le domaine cardiovasculaire, les chercheurs tentent d’utiliser la thérapie génique pour favoriser la régénération des tissus vasculaires en cas d’ischémie artérielle. Pour ce faire, ils utilisent des gènes codants pour des facteurs de croissance vasculaires. Ils essaient également de diminuer la resténose (prolifération cellulaire non souhaitée après la pose d’un stent) en injectant des produits inhibant la croissance cellulaire des parois artérielles.

Thérapie génique de l'adrénoleucodystrophie : Les cellules progénitrices CD34+ des patients ALD traités continuent à exprimer le gène thérapeutique plus de 2 ans après traitement. En rouge : expression de la protéine ALD ; en bleu : noyau de la cellule. © Inserm, P. Aubourg

Thérapie génique de l'adrénoleucodystrophie

Dans le cadre de la prise en charge des maladies monogéniques, de nombreux essais concernent les déficits immunitaires comme l’immunodéficience sévère combinée (SCID), l’immunodéficience par déficit en adénosine désaminase (ADA-SCID), le syndrome de Wiskott Aldrich ou la granulomatose septique chronique, mais également des maladies hématologiques comme l’hémophilie B ou A, l’anémie de Fanconi ou encore la bêta-thalassémie. D’autres travaux concernent les pathologies rétiniennes comme l’amaurose de Leber ou la neuropathie optique de Leber, les maladies lysosomales comme la maladie de Sanfilipo ou la maladie de Gaucher et d’autres maladies neuro-dégénératives comme l’adrénoleucodystrophie ou la leucodystrophie métachromatique. Dernier exemple, les maladies de la peau telles que l’épidermolyse bulleuse. Toutes ces pathologies sont liées au défaut de fonctionnement d’un gène unique.

Dans le cas des maladies hématologiques, plusieurs essais consistant à modifier des cellules souches ex vivo en y injectant une copie saine du gène à l’origine de la maladie, puis à les réinjecter dans le sang du patient ont montré un bénéfice durable pour les patients. Dans le futur, l’utilisation de divers types de cellules souches telles que les cellules souches pluripotentes induites, ou encore de nouvelles modalités d’ingénierie tissulaire, pourront faire partie de l’arsenal thérapeutique associé à la thérapie génique.

Dans le domaine des maladies infectieuses, un traitement curatif par thérapie génique pourrait être envisagé par exemple en cas d’infection par le VIH. Plusieurs approches sont étudiées. La première consiste à modifier les lymphocytes T4 CD4 des patients (cibles du VIH) afin de les rendre résistants au virus. A cette fin, un clinicien prélèverait des cellules souches hématopoïétiques dans le sang du patient et y ferait rentrer un gène qui rendrait ces cellules insensibles au virus (plusieurs gènes pourraient être utilisés comme le démontre des essais réalisés in vitro). Les cellules modifiées seraient ensuite réinjectées dans l’organisme du patient et conduiraient à la production de lymphocytes T4 CD4 résistants au VIH, capables de survivre et de se multiplier. Des essais conduits chez l’animal et, récemment, un essai clinique mené chez l’homme ont été publiés : les résultats sont encourageants. Dans le cadre d’une seconde approche, les chercheurs travaillent au développement de vaccins à partir de vecteurs viraux utilisés pour le transfert de gène. Des résultats encourageants en terme de protection ont été obtenus chez les primates et des essais se préparent chez l’homme.

Les vecteurs, une clé du succès de la thérapie

Pour faire pénétrer l’acide nucléique à visée thérapeutique dans les cellules du patient, on utilise un vecteur chargé d’assurer ce transport. Des virus modifiés (vecteurs viraux) sont utilisés dans plus de deux tiers des essais. Ce type de vecteurs reste la référence à ce jour.

Il existe des vecteurs viraux non réplicatifs (qui ne peuvent se multiplier), intégratifs (l’ADN du vecteur viral s’intègre dans l’ADN de l’hôte), non intégratifs (le transgène demeure dans la cellule sans s’intégrer au génome de l’hôte) et des vecteurs non viraux non intégratifs. Dans tous les cas, les vecteurs utilisés font l’objet d’une ingénierie importante pour annuler leur potentiel toxique et, lorsque cela est nécessaire, pour les rendre les plus silencieux possibles vis-à-vis du système immunitaire de l’hôte afin de permettre une correction thérapeutique à long terme.

Institut du thorax UMR 915 : Equipe 3

Institut du thorax UMR 915

Les débuts de la thérapie génique ont été marqués par des accidents liés à l’utilisation de vecteurs viraux qui ont pénétré dans des organes non cibles, ou qui ont provoqué l’intégration du transgène dans des séquences dites "pro-oncogènes" du génome du patient, déclenchant des cancers voire des décès. Ces accidents ont incité les chercheurs à explorer le fonctionnement précis de ces vecteurs viraux, la façon dont ils intègrent leur ADN dans les chromosomes de l’hôte... Ces connaissances ont beaucoup contribué au développement de la thérapie génique, grâce à la mise au point de vecteurs plus sûrs et plus efficaces. L’avènement des techniques "à haut débit" pour le séquençage des génomes et l’analyse des séquences obtenues a constitué une avancée indispensable dans ce secteur.

Les vecteurs viraux intégratifs insèrent leur ADN (qui contient le transgène thérapeutique) dans le génome de l’hôte. En conséquence, le gène thérapeutique est transmis aux cellules filles en cas de divisions cellulaires. Ces vecteurs sont idéaux en cas de thérapie cellulaire et de thérapie génique utilisant des cellules souches, ainsi que dans les approches où l’effet recherché doit être permanent.

Parmi les vecteurs viraux intégratifs, les rétrovirus ont été beaucoup utilisés dans les années 2000, mais le recours à cette famille de vecteurs viraux déclinent peu à peu : aujourd’hui moins de 20 % des essais en cours les utilisent. Ils ont en effet été impliqués dans la survenue de leucémies lors des essais menés sur les "enfants bulles" dans les années 2000. Ces virus sont désormais mieux connus et maitrisés, de sorte à réduire le risque d’insertion aléatoire dans le génome de l’hôte. Une fonction d’ "auto-inactivation" empêche notamment le virus de déclencher l’expression inopportune d’un gène proche du site où il s’est inséré.

Mais pour palier ce risque d’insertion aléatoire, les chercheurs utilisent de plus en plus souvent des lentivirus. Ceux-ci semblent en effet avoir un profil d’intégration génomique plus sûr que celui des rétrovirus. Par ailleurs, les lentivirus pénètrent bien dans des cellules qui ne se divisent pas comme les neurones ou les cellules hépatiques (alors que les rétrovirus s’y insèrent mal). Ces virus sont dérivés de virus humains comme le VIH, mais ils sont modifiés de manière à être inoffensifs. Des essais ont été menés grâce à ces vecteurs dans le traitement de l'adrénoleucodystrophie (par l’équipe de Nathalie Cartier et Patrick Aubourg, unité Inserm 986, Kremlin-Bicêtre) ou encore dans le traitement d'hémoglobinopathies (par l’équipe de Philippe Leboulch et Yves Beuzard, à Paris), en collaboration avec le Centre d’investigation clinique intégré en biothérapie de l’hôpital Necker (Paris). Par ailleurs, compte tenu du potentiel de ces vecteurs et grâce au travail de l’équipe d’Anne Galy (unité Inserm 951, Evry), le Généthon a mis en place une production industrielle de vecteurs lentiviraux et collabore avec de nombreuses équipes internationales qui les utilisent, notamment pour le traitement du syndrome de Wiskott-Aldrich.

Quand il s’agit de faire pénétrer un transgène dans des cellules qui ne se divisent pas, les vecteurs non intégratifs sont privilégiés car ils sont considérés comme plus sûrs. Avec ces vecteurs, le transgène reste dans la cellule de l’hôte, mais sans s’insérer dans son génome. Il s’exprime pendant la durée de vie de la cellule et disparaît avec la mort de celle-ci. Les adénovirus ont été très utilisés dans le passé mais leur usage tend à diminuer, notamment pour le traitement des maladies monogéniques. Ils restent cependant des vecteurs de choix en immunothérapie contre le cancer. Ils peuvent transporter de plus grandes séquences d’ADN que les virus intégratifs, même si la taille maximale des transgènes transportés reste parfois inférieure à celle de gènes humains. Ce type de vecteurs présente plusieurs avantages : il pénètre bien dans les cellules qui ne sont pas en division et il est associé à un niveau élevé d’expression du gène vectorisé.

Adénovirus :  Associés à des infections respiratoires ou digestives bénignes, les adénovirus sont par ailleurs de formidables outils pour la thérapie génique © Inserm, P. Roingeard

Adénovirus

Les vecteurs dérivés de virus adéno-associés (ou AAV) permettent le transfert de petites séquences génétiques (seulement 4 kilobases contre 13 kilobases avec les lentivirus). Ils sont intéressants car peu inflammatoires. Ils sont de plus en plus utilisés, par exemple pour le traitement de l’amaurose de Leber. Le seul médicament de thérapie génique autorisé en Europe (Glybera) utilise d’ailleurs ce type de vecteur.

En parallèle, la mise au point de vecteurs non viraux se poursuit afin de répondre à deux problématiques : une meilleure sécurité des vecteurs et le transport de grandes quantités d’ADN. A ce titre, près de 20 % des essais de thérapie génique se fondent sur l’injection directe d’ADN nu modifié et protégé des enzymes cellulaires (nucléases) grâce à des modifications chimiques. Une autre stratégie est la lipofection : le gène thérapeutique est associé à des lipides cationiques qui favorisent son entrée dans la cellule hôte.

Des succès majeurs à retenir

La France est un des leaders mondiaux de la thérapie génique, tant au niveau académique qu’au niveau clinique, en particulier grâce à des équipes attachées à l’Inserm.

En 1999, des équipes françaises (Salima Hacein-Bey Abina, Marina Cavazzana et Alain Fischer, unité Inserm 768, hôpital Necker, Paris), en collaboration avec des équipes anglaises, ont été pionnières dans le traitement par thérapie génique des "bébés bulles" (atteints de SCID X1). Malgré la survenue de plusieurs cas de leucémies chez les 19 patients inclus, les effets thérapeutiques du traitement persistent encore. Sur les 9 enfants traités en France il y a plus de 10 ans, 8 sont vivants, à domicile, et suivent une scolarité normale. Sans ce traitement, leur espérance de vie était très limitée.

Alain Fischer, Unité Inserm 768,

Alain Fischer, Unité Inserm 768, "Développement normal et pathologique du système immunitaire", Département de Biothérapies et Unité d’Immunologie et d’Hématologie pédiatrique, Hôpital Necker Enfants Malades AP-HP, Université Paris Descartes, Paris

L’amaurose de Leber a également fait l’objet d’essais aux résultats remarquables. La maladie correspond à une dégénérescence pigmentaire au niveau de la rétine pouvant conduire à la cécité. Elle est causée par une mutation affectant le gène RPE65. L’injection d’un vecteur de type AAV contenant une copie fonctionnelle de ce gène, directement dans la rétine, a permis de stopper l’évolution de la maladie et de préserver la vision qui restait aux patients. Les premiers essais réussis ont eu lieu en Angleterre et aux Etats-Unis en 2007. Un essai est actuellement en cours à Nantes (équipe de Fabienne Rolling et Philippe Moullier, unité Inserm 1089, Nantes). Une société américaine vient d’être créée pour développer cette stratégie (Spark Therapeutics) et une autre existe en France, GenSight, fondée par José-Alain Sahel, directeur de l’Institut de la Vision (unité Inserm 968), à Paris.

L’adrénoleucodystrophie, une maladie génétique neurodégénérative liée à une démyélinisation du système nerveux central, a également fait l’objet de travaux prometteurs. Un essai a été mené chez quatre enfants en 2009, par des équipes françaises (Nathalie Cartier et Patrick Aubourg, unité Inserm 986, Kremelin-Bicêtre), en collaboration avec une société biotechnologique américaine et avec l’hôpital Necker (Paris). La stratégie utilisée consiste à prélever des cellules souches de la moelle osseuse (cellules souches mésenchymateuses), à les corriger génétiquement ex vivo à l’aide d’un lentivirus, puis à les réinjecter dans la circulation sanguine. Le traitement a permis de stopper l’évolution de la maladie chez ces enfants qui mènent aujourd’hui une vie pratiquement normale. Cet essai a ouvert la voie au développement de cette stratégie pour de nombreuses autres maladies neurodégénératives. Un résultat tout à fait spectaculaire vient notamment d’être obtenu par une équipe italienne (Alessandra Biffi et Luigi Naldini, à Milan) chez des enfants atteints de leucodystrophie métachromatique, une autre maladie génétique neurodégénérative. D’autres approches sont également en cours de développement dans le traitement de maladies lysosomales comme la maladie de Sanfilippo, avec par exemple les travaux menés par Jean-Michel Heard à l’Institut Pasteur (unité 1115 Institut Pasteur/Inserm), Marc Tardieu à l’hôpital Bicêtre et Michel Zerah à l’hôpital Necker, à Paris.

Vous devez disposer du lecteur Flash pour afficher cette vidéo.

Marina Cavazzana Calvo, coordinatrice de Centre d'Investigation Clinique en biothérapie, hôpital Necker-enfants malades, Paris

Un essai lancé en 2010 a en outre montré l’efficacité de la thérapie génique pour le traitement de l’hémophilie B. Il s’agit cette fois d’un protocole anglo-américain (équipe d’Amit Nathwani, à Londres). Les chercheurs ont utilisé un vecteur AAV contenant un gène FIX, capable de restaurer la coagulation sanguine. Six patients ont été inclus. Le gène s’est exprimé chez tous les participants et a permis aux quatre d’entre eux (qui avaient reçu les doses de vecteur les plus fortes) d’interrompre leur traitement prophylactique contre les hémorragies spontanées. Le suivi à long terme devra confirmer la sécurité du traitement et la persistance de l’effet thérapeutique dans le temps.

Les personnes atteintes de bêta-thalassémie, une forme majeure d’anémie, pourraient également être, à l’avenir, traitées par thérapie génique à en croire les résultats d’un essai français mené en 2010 (équipe de Philippe Leboulch et Marina Cavazzana à Paris). Il s’agissait d’un essai pionner qui a permis de soigner un patient âgé de 18 ans. Une première mondiale. Ce patient a été transplanté avec ses propres cellules hématopoïétiques CD34 corrigées ex vivo grâce à un lentivirus pour qu’elles expriment un transgène bêta-globine. Le jeune homme a retrouvé une vie normale, sans recours à des transfusions sanguines mensuelles.

Dans le domaine du cancer, les résultats sont plus aléatoires mais certains travaux sont encourageants. Une équipe américaine a par exemple prouvé, en 2010, l’efficacité de cellules T modifiées pour le traitement de leucémies (équipe de Carl June et Bruce Levine, à Philadelphie). Les chercheurs ont utilisé un vecteur lentiviral de type HIV-1 car il s’intègre naturellement dans les lymphocytes T. Ce vecteur a permis le transfert de gènes codant pour des protéines qui facilitent la reconnaissance des cellules tumorales à les éliminer. La société Novartis a investi dans le secteur et plusieurs start-up se sont créées, telles que Juno Therapeutics à Seattle.

Le secteur industriel, autour de la thérapie génique et les filières de service associées, se développe dans le monde et en France. Plusieurs personnalités de la recherche française rattachées à l’Inserm ont été pionnières dans ces démarches : Citons par exemple David Klatzmann avec la création de Genopoietic en 1993, mais également Pierre Charneau avec Theravectys, David Sourdive avec Cellectis, Philippe Leboulch avec Bluebird bio ou encore récemment José-Alain Sahel avec la fondation de GenSight Biologics en 2012. L’AFM Téléthon a par ailleurs investi depuis de nombreuses années dans la thérapie génique. Et Généthon BioProd, le premier établissement pharmaceutique à but non-lucratif dédié à la fabrication de médicaments de thérapie cellulaire et génique, a récemment ouvert à Evry.

Pour aller plus loin

Les associations de malades

Actualités

Communiqués de Presse

A lire aussi sur inserm.fr

Biothérapies : les thérapies cellulaires et géniques - Séminaire de formation Ketty Schwartz

Sur d’autres sites

Multimédias

 

Vous devez disposer du lecteur Flash pour afficher cette vidéo.

Anne Galy, Directrice Unité Inserm 951, Généthon

 

 

 
^ Haut de page
Voir Modifier Créer ici
Google+ Linkedin Viadeo Twitter Facebook