Épilepsie : Un nouvel outil pour guider la chirurgie

Pour certains patients épileptiques, la seule solution pour guérir est la chirurgie. Encore faut-il bien repérer les zones du cerveau à opérer. Un nouveau traceur radioactif a montré son intérêt pour localiser ces zones épileptogènes lorsque les outils actuels font défaut.

Un article à retrouver dans le magazine de l’Inserm n°61

Un court-circuit, un orage électrique : voilà ce qui se passe dans le cerveau d’une personne touchée par une crise d’épilepsie. Cette intense activité neuronale, qui affecte à tout âge près de 1 % de la population, trouve son origine dans une ou plusieurs zones dysfonctionnelles du cerveau dont les cellules nerveuses s’excitent de façon anormale. En fonction de la localisation des neurones affectés par cette « décharge » électrique, une variété de manifestations peuvent apparaître : contractions musculaires, perte de tonus, absences, hallucinations, troubles du langage et de la mémoire, modification respiratoires… Ces crises, parfois très impressionnantes, peuvent s’accompagner de pertes de connaissance, voire conduire au décès. Mais cette maladie neurologique ou plutôt ces maladies, tant l’épilepsie présente des causes et des manifestations variées, sont aussi associées à des troubles de la cognition, de l’humeur, du comportement ou encore du sommeil qui ont un impact significatif sur les personnes atteintes.

Détecter les neurones qui dysfonctionnent

Il existe bien des traitements pharmacologiques qui régulent l’activité des neurones et permettent de limiter les crises et leurs conséquences sur le fonctionnement du cerveau. « Mais ces médicaments n’ont pas ou peu d’effets pour près d’un tiers des patients », remarque Viviane Bouilleret, neurologue et cheffe de service à l’hôpital Bicêtre à Paris. Certains d’entre eux peuvent toutefois bénéficier de la chirurgie. « Le but, lorsque c’est réalisable, est de retirer le foyer épileptogène, cette zone non fonctionnelle du cerveau qui occasionne les crises, sans affecter les parties saines », explique la neurologue. Pour localiser de façon précise ce groupe de neurones qui fonctionnent anormalement, les patients passent des tests psychologiques et toute une batterie d’examens neurologiques, notamment des électroencéphalogrammes pour examiner l’activité du cerveau en dehors et pendant les crises ainsi que des IRM pour détecter d’éventuelles lésions cérébrales qui pourraient être à l’origine de l’épilepsie.

Un autre examen important pour situer les zones du cerveau impliquées dans l’épilepsie est la tomographie à émission de positons (TEP), couramment appelée PET scan. « Cette technique d’imagerie médicale permet notamment de suivre l’activité métabolique des cellules, explique Sebastian Rodrigo, médecin radiologue et chercheur de l’université Paris-Saclay à Orsay. Or, nous savons que les neurones des foyers épileptogènes ne consomment pas autant de glucose que les neurones sains. » Via l’injection au patient d’un radiotraceur, le fluorodésoxyglucose, une molécule de glucose enrichie en fluor radioactif, il est donc possible de localiser les zones du cerveau dont le métabolisme est altéré grâce à une caméra qui détecte les positons émis par le fluor radioactif. Pourtant, « l’ensemble de ces examens n’est pas concluant pour environ 40 % des patients qui ne répondent pas aux traitements actuels et pourraient théoriquement tirer un bénéfice de la chirurgie », déplore le neuroradiologue.

Un outil d’imagerie de précision

Cet état de fait pourrait prochainement changer grâce à un radiotraceur conçu il y a plus de 15 ans pour la TEP : le DPA-714. « Sous ce nom se cache une molécule qui a initialement été développée pour visualiser l’inflammation des tissus nerveux au cœur du cerveau, explique Vincent Lebon, directeur du laboratoire Biomaps et du service hospitalier Frédéric-Joliot à Orsay. En cas de neuro-inflammation, les cellules gliales, comme les astrocytes en forme d’étoiles, qui entourent les neurones et soutiennent leur bon fonctionnement expriment des protéines appelées TSPO. C’est sur ces protéines que vient se fixer de façon spécifique le DPA-714. » Grâce à ce radiotraceur, les scientifiques de Biomaps et d’autres groupes de recherche ont pu étudier, dans des modèles expérimentaux et chez les humains, la neuro-inflammation associée à des pathologies cérébrales inflammatoires telles que la sclérose en plaques mais aussi dans des maladies neurodégénératives comme la maladie d’Alzheimer. « Le DPA-714 permet d’accéder à des informations qui ne sont pas visibles par d’autres techniques d’imagerie. Il est de ce fait plébiscité par de nombreux neurologues et chercheurs », se réjouit le directeur de cette unité Inserm, qui fait partie des très rares laboratoires capables de synthétiser ce radiotraceur.

Coupe de cerveau visualisée au scanner, avec des zones colorées qui correspondent aux sites de fixation des marqueurs injectés aux patients.
Superposition d’images de tomographie par émission de positons et d’IRM avec, à gauche, le DPA-714 et, à droite, le traceur classique (fluorodésoxyglucose). Au centre, zone de fixation anormalement élevée du traceur DPA-714.© Univ. Paris Saclay/Laboratoire d’imagerie biomédicale multimodale

Mais c’est bien dans la prise en charge de l’épilepsie que le DPA-714 pourrait se révéler un outil essentiel. « Les cellules gliales des foyers épileptogènes sont aussi dans un mode inflammatoire et surexpriment TSPO. Il est donc théoriquement possible de traquer la neuro-inflammation associée avec la zone cérébrale dysfonctionnelle responsable des crises grâce au DPA-714, explique Viviane Bouilleret, qui est aussi chercheuse au sein du laboratoire Biomaps. Ce qui a récemment été prouvé lors d’un essai clinique mené sur 23 patients pour qui la TEP avec le fluorodésoxyglucose n’était pas concluante et qui n’étaient donc pas opérables malgré le fait d’être atteints d’une forme d’épilepsie pharmaco-résistante. La TEP au DPA-714 nous a permis de repérer des anomalies cérébrales qui n’étaient pas visibles avec le fluorodésoxyglucose et de localiser de façon beaucoup plus précise les foyers épileptogènes. Huit patients ont d’ailleurs pu bénéficier de la chirurgie et quatre d’entre eux ne font plus de crises depuis l’opération », poursuit la neurologue. Le DPA-714 pourrait donc prochainement venir compléter les outils d’imagerie existants pour localiser les foyers épileptogènes, voire, à terme, se substituer au fluorodésoxyglucose pour le diagnostic et la prise en charge de l’épilepsie pharmaco résistante. Et ainsi aider des patients dont les options thérapeutiques sont à l’heure actuelle très limitées.


Viviane Bouilleret, Sebastian Rodrigo et Vincent Lebon sont chercheurs dans l’équipe Neuroimagerie pharmacologique au Laboratoire d’imagerie biomédicale multimodale (unité 1281 Inserm/CEA/CNRS/Université Paris-Saclay), à Orsay.


Source : M. Cheval et coll. [18F]DPA-714 PET Imaging in the Presurgical Evaluation of Patients With Drug-Resistant Focal Epilepsy. Neurology, 7 novembre 2023 ; DOI : 10.1212/WNL.0000000000207811

Auteur : S. P.

À lire aussi

Neurones embryonnaires de rat. Après 14 jours de culture, ils ont été transfectés par un plasmide codant pour la forme sauvage de la sous-unité gamma 2 du récepteur au GABA (GABRG2), un neurotransmetteur impliqué dans l'épilepsie, puis laissé en culture 19 jours supplémentaires avant fixation et marquage par immunofluorescence. Les noyaux cellulaires sont marqués en bleu par le Dapi, Gabrg2 est marqué en vert et les synapses inhibitrices sont repérées en rouge par un anticorps anti GAD6 (GAD65 + GAD67).