Programmer des comportements cellulaires complexes devient possible

Science

La programmation de populations de cellules vivantes permettrait d’effectuer des tâches complexes dans de nombreux domaines de santé : diagnostic, thérapies ou encore ingénierie de tissus et de matériaux. A Montpellier, des chercheurs du Centre de biochimie structurale (CBS) viennent de développer un nouveau type de circuits génétiques qui permet justement de programmer des opérations complexes à l’échelle d’un groupe de bactéries.

Contrôler l’action de cellules à des fins diagnostiques ou thérapeutiques est déjà une réalité. Les scientifiques savent par exemple modifier des lymphocytes T d’un patient pour les "dresser" contre sa tumeur. Mais ce travail est hautement spécifique, applicable à un type de cellules et pour une indication particulière. Une équipe Inserm propose aujourd'hui d’aller beaucoup plus loin dans la biologie synthétique, grâce à un nouveau système de circuits génétiques contrôlables de l’extérieur et permettant de générer des fonctions complexes. Ce système automatisé est à priori utilisable pour tous types d’applications. Un peu à l’image d’un logiciel informatique qui permet d’effectuer des tâches variées selon les souhaits des utilisateurs.

Concrètement, le laboratoire de Biologie synthétique, codirigé par de Jérôme Bonnet au Centre de biochimie structurale de Montpellier*, incorpore dans des bactéries de l’ADN synthétique permettant de reprogrammer leur comportement. Cet ADN porte des séquences indépendantes, sensibles à des signaux extérieurs différents, qui contrôlent l’expression d’enzymes pouvant eux-mêmes activer ou au contraire inhiber certains gènes. Ces séquences sont organisées de façon logique afin d’obtenir des réponses variées en fonction de la combinaison des signaux extérieurs utilisée. "Nous nous sommes inspirés des systèmes électroniques, qui grâce à une combinaison de signaux binaires - 0 et 1 - permettent d’aboutir à des fonctions variées, explique Jérôme Bonnet. En outre, pour démultiplier les possibilités, nous ne demandons pas à une seule cellule d’effectuer un programme complexe : nous divisons le travail entre plusieurs souches bactériennes, chacune effectuant une partie du programme. Nous exploitons ainsi la puissance des bactéries à travailler de manière collective en milieu naturel".

14 populations de bactéries et 65 000 programmes possibles

Pour prouver que cette approche fonctionne, le laboratoire a construit 14 bactéries différentes, chacune capable d'exécuter un "sous-programme" spécifique, dont il est possible de suivre l'exécution grâce à l’utilisation de gènes témoins produisant des protéines fluorescentes. En associant ces souches selon différentes combinaisons, ce sont plus de 65 000 possibilités d’activation ou d’inhibition de gènes qui peuvent être obtenues selon les signaux extérieurs appliqués (à ce stade, les signaux utilisés sont l'administration d'antibiotiques et de sucres).

Une autre caractéristique importante de ce travail est qu'il autorise l’automatisation de ce système pour obtenir la fonction souhaitée. Il repose en effet sur un algorithme qui génère les séquences d’ADN du circuit génétique selon les désidératas du chercheur. "Jusqu'à présent, la plupart des circuits biologiques étaient conçus sur mesure, ce qui rendait leur élaboration lente et réservée à un petit nombre d’initiés. A l’inverse, nos circuits génétiques multicellulaires peuvent être générés de manière automatisée, en fonction des besoins des utilisateurs à partir de l'outil CALIN, disponible en ligne. Notre but est vraiment de démocratiser la bioprogrammation", explique Sarah Guiziou, l’auteure principale de ce travail. "Nous avons créé un système logique garantissant une réponse prévisible. Maintenant les chercheurs peuvent l’utiliser pour des applications particulières".

Le laboratoire montpelliérain entend utiliser ce système pour développer des bactéries à visée thérapeutique. "Le microbiote a un rôle essentiel pour la santé, ajoute la chercheuse. Nous pourrions modifier des bactéries de la flore intestinale pour leur permettre de détecter des marqueurs et activer des processus thérapeutiques afin de lutter par exemple, contre les maladies métaboliques. Autre exemple, des bactéries se logent dans des tumeurs immunodéprimées et y sont à l’abri du système immunitaire. Il serait intéressant de les programmer pour détruire les cellules cancéreuses".

Note :
*unité 1054 Inserm/CNRS/Université de Montpellier, Centre de biochimie structurale, Montpellier

Source : S Guiziou et coll, Hierarchical composition of reliable recombinase logic devices. Nature Communications, édition en ligne du 28 janvier 2019, https://doi.org/10.1038/s41467-019-08391-y