Développement cérébral : comment s’effectue le tri des synapses ?

Lorsqu’il est en plein développement, le cerveau doit régulièrement faire le tri entre les innombrables connexions formées par les neurones qui le composent. Alors qu’on ignorait comment ce tri s’opère, des chercheurs viennent d’identifier une protéine indispensable à ce processus : le récepteur A2A. Ce dernier pourrait être également impliqué dans des troubles cognitifs...

Au cours du développement cérébral, il existe une période intense pendant laquelle les neurones créent de nombreuses connexions entre eux : c’est la période dite de synaptogenèse. Les points de contact entre neurones (ou « synapses ») se multiplient, puis leur quantité doit être réduite pour que le fonctionnement du cerveau soit plus performant. On savait déjà que ce phénomène dépendait de l’activité neuronale – les synapses inutilisées sont finalement détruites – mais la manière dont ce processus d’élagage est contrôlé était jusqu’à présent largement incomprise. Pour avancer sur le sujet, Christophe Bernard* et Sabine Lévi** se sont penchés sur le cas des synapses GABAergiques. Ces connexions au sein desquelles la molécule GABA sert de messager chimique sont particulièrement importantes : elles sont parmi les premières à être formées et leur activité est indispensable à la construction du reste du circuit neuronal.

Les travaux dirigés par les deux chercheurs, conduits chez la souris, mettent en lumière le rôle clé du récepteur à l’adénosine A2A dans le processus de tri : situé au niveau de la synapse, ce récepteur permet à la connexion d’être maintenue lorsqu’il est activé par l’adénosine (qui joue alors le rôle de neurotransmetteur). En revanche, s’il n’est pas activé pendant plus de 20 minutes, le processus d’élimination s’enclenche. Un blocage expérimental du récepteur conduit également à la destruction de la synapse. Le récepteur A2A agirait donc comme un contremaître dans l’agencement du système nerveux central au cours du développement : « On pourrait comparer le développement du cerveau à un pays en construction, dans lequel chaque ville est, au départ, reliée à toutes les autres par des routes directes. Le récepteur A2A agit comme un détecteur d’activité : tant que la route est empruntée par des voitures, le détecteur envoie un feu rouge aux ouvriers en charge de démonter les routes. Si aucune voiture ne passe durant 20 minutes, elle leur envoie un feu vert, et la route est supprimée », explique Christophe Bernard.

Chez l’humain, la période de synaptogenèse a vraisemblablement lieu en fin de vie intra-utérine ou dans les tout premiers temps après la naissance, phase durant laquelle l’expression d’A2A est connue pour être particulièrement forte.

Une protéine sous influence de la caféine

« Il faut désormais déterminer si les synapses qui fonctionnent avec d’autres neurotransmetteurs, comme le glutamate ou l’acétylcholine, sont éliminées selon le même principe. Par ailleurs, on sait qu’A2A est activé par l’adénosine, mais le mécanisme qui stimule ou inhibe la production de celle-ci en fonction de l’activité synaptique reste à établir », poursuit le chercheur.

Ce travail fondamental pourrait avoir des applications cliniques intéressantes : « Nous nous sommes penchés sur le rôle de l’adénosine parce que nous avions précédemment observé qu’une consommation élevée de caféine au cours de la période de synaptogenèse gêne le fonctionnement naturel de la protéine A2A. Chez l’animal, cela se traduit par des troubles cognitifs ultérieurs. On peut donc se demander si ce phénomène existe aussi chez l’humain, d’autant que la production de l’enzyme qui dégrade la caféine est réduite chez la femme enceinte. » L’exposition in utero à d’importantes quantités de caféine pourrait-elle être à l’origine de troubles cognitifs au cours de la vie de l’enfant à naître ? « Alors que l’on connaît son rôle bénéfique pour le fonctionnement cognitif de l’adulte, cette hypothèse interroge. Nous explorons la question à travers une étude financée par l’Agence nationale de la recherche et la fondation Alzheimer. Elle vise à expliquer cet effet, dit “Janus”, qui rend la caféine bénéfique ou délétère selon l’âge. » Il pourrait par exemple reposer sur l’enclenchement de mécanismes moléculaires différents selon l’âge auquel a lieu l’interaction entre caféine et A2A. « Cette étude nous permettra sans doute de mieux comprendre les mécanismes impliqués dans la destruction ou la conservation des synapses », espère Christophe Bernard. Un travail qui pourrait en outre apporter des éléments importants pour l’identification de nouvelles cibles dans le traitement de troubles cognitifs ou de la maladie d’Alzheimer.

Notes :
*unité 1106 Inserm/Aix-Marseille Université, Institut de neurosciences des systèmes, équipe Physionet, Marseille
**unité 1270 Inserm/Sorbonne Université, Institut du Fer à Moulin, équipe Plasticité des réseaux corticaux et épilepsie, Paris

Source : F Gomez-Castro et coll. Convergence of adenosine and GABA signaling for synapse stabilization during development. Science du 5 novembre 2021. DOI : 10.1126/science.abk2055

À lire aussi