Radioactivité : faibles doses, fortes doses, sommes-nous tous égaux ?

22 mars 2011

L’accident de la centrale de Fukushima au Japon a suscité de nombreuses questions sur les effets des diverses doses de radiooactivité pour la population. A quelle quantité de radioactivité sommes-nous quotidiennement exposés, quels sont les effets de faibles doses pour la santé et sommes-nous tous égaux au plan biologique ?

Informations complémentaires

La radioactivité : un dossier d’information du CEA

Nicolas Foray

Les réponses de Nicolas Foray, chercheur au sein du groupe de radiobiologie de l’Unité Inserm 836 (Grenoble).

 

Quelles sont les principales sources de radioactivité auxquelles nous sommes habituellement exposés ?

Les différentes sources de radioactivité pour l’homme, une animation du CEA

Les différentes sources de radioactivité pour l’homme, une animation du CEA

Pour la population générale, les deux principales sources d’irradiation sont la radioactivité naturelle et l’irradiation d’origine médicale (mammographies, scanners, radiodiagnostic…). Alors que la première a une contribution d’environ 45 %, la seconde (environ 25 %) a doublé en 10 ans et pourrait, pour certains individus dépasser la radioactivité naturelle. Notons cependant que la radioactivité naturelle (environ 2,4 mSv/an en France) varie significativement avec le lieu. Elle peut notamment atteindre plus de 20 mSv/an dans l’Etat du Kerala en Inde où l’incidence moyenne de cancers n’est pas significativement différente du reste du monde. Suivant les publications, la radioactivité naturelle peut prendre en compte les radiations qui proviennent de l’espace (rayonnement cosmique issu du soleil et des étoiles) et l’irradiation dite interne (radioactivité naturellement émise par notre corps). Par exemple, un homme de 80 kg émet environ 8000 particules par seconde (8000 Bq). On trouve la même valeur pour 1 kg de granit.

 

Effets pour la santé : une question de dose(s)
La radioprotection est basée sur 2 grandeurs majeures :
- l’activité émise (nombre de désintégrations par seconde ou Becquerels (Bq)
- la dose (énergie absorbée par kg de matière exprimée en Joules/kg ou Gray (Gy)
Afin de différencier la dose reçue selon la nature des particules émises, l’organe cible et la surface touchée, on parle pour les effets chez l’homme d’équivalent de dose ou dose efficace, exprimé en Sievert (Sv).
Quelques ordres de grandeur utiles :
Radioactivité naturelle : 1-20 mSv par an (des pics à 40 mSv ont été reportés en Iran)
Une radiographie du bras : 0,1 à 1 mSv en quelques minutes
Une mammographie : 1 à 4 mSv en quelques minutes
Un scanner du thorax : 10-20 mSv en quelques minutes
Une session de radiothérapie : 2 Sv en quelques minutes à la tumeur (une radiothérapie est faite de plusieurs sessions espacées de 24 h)
En dehors de la radioactivité naturelle et de toute irradiation d’origine médicale, la limite individuelle pour le grand public (hors travail) est de 1 mSv/an (corps entier), 15 mSv/an pour le cristallin et 50 mSv/an pour chaque cm2 de peau.

Quels sont les effets d’une irradiation au plan biologique ?

Noyau d'une cellule fibroblastique humaine de peau  irradiée à 100 mSv de rayons X (seuil d'augmentation de risque des cancers radioinduits). Vingt-quatre heures après irradiation il subsiste au moins 4 cassures double-brin de l'ADN (coloration en vert brillant).

Noyau d'une cellule fibroblastique humaine de peau irradiée à 100 mSv de rayons X (seuil d'augmentation de risque des cancers radioinduits). Vingt-quatre heures après irradiation il subsiste au moins 4 cassures double-brin de l'ADN (coloration en vert brillant).

Une irradiation produit des dégâts sur l’ADN des cellules. Ils peuvent n’avoir aucun effet s’ils sont réparés fidèlement, mener à la mort cellulaire et perturber la fonction de l’organe touché (toxicité) s’ils ne sont pas réparés ou initier un phénomène de cancérogénèse en cas de mauvaise réparation. La vitesse et l’intensité de la réponse dépendent de nombreux facteurs comme la dose, la nature du rayonnement, l’organe irradié et la susceptibilité individuelle.

Dans le cas d’une irradiation sur le corps entier, la dose létale moyenne est de 5 Gy pour l’homme. Pour des doses croissantees, supérieures à 1-2 Gy, le syndrome d’irradiation aigüe se traduit principalement pour les plus fortes doses par, successivement une altération de la composition sanguine, un dérèglement gastro-intestinal et des troubles neurologiques.

En deçà de 1 Gy, les manifestations de toxicité sont plus rares mais on peut observer une baisse temporaire des globules rouges, de la fertilité et de l’immunité.

Par contre, l’effet cancérogène prédomine. La survenue des cancers dépend de la dose mais aussi de la biologie de l’organe. Globalement, plus les cellules de cet organe se renouvellent rapidement de façon naturelle, plus la survenue du cancer est rapide. Les cancers radioinduits les plus fréquents sont les leucémies et les cancers de la thyroïde chez l’enfant (notamment dûs à l’iode radioactif).

Existe-t-il une dose-seuil en dessous de laquelle il n’y a pas de risque ?

La toxicité pour les cellules irradiées à faibles doses (notamment inférieures à 0,1 Gy) est mal connue. En effet, pour des raisons statistiques, plus la dose est faible, plus les effets sont difficiles à mettre en évidence. Il faut compenser les contraintes statistiques par des analyses à plus grande échelle et celles-ci sont plus difficiles à mettre en place. Globalement, l’histoire des catastrophes nucléaires a permis de définir un seuil de 100 à 200 mGy, au-delà duquel on considère que le risque de cancer radioinduit existe. Que se passe-t-il à des doses inférieures à ce seuil ? Les travaux de recherche expérimentale sur les cellules de modèles animaux prédominent mais l’extrapolation à l’homme devient de moins en moins admise. L’épidémiologie humaine reste limitée par l’étude de rares accidents (Tchernobyl) ou événements (Hiroshima, Nagasaki) de nature très différente pour permettre une généralisation satisfaisante. Par contre, l’étude des faibles doses sur les cellules humaines a révélé des phénomènes non-linéaires inattendus comme par exemple des taux de mort cellulaires aussi élevés à 0,1 Gy qu’à 1 Gy. Ces études ont surtout montré que le facteur individuel peut changer drastiquement la réponse toxique et de cancérogénèse à une irradiation à faible dose.

Faut-il considérer le risque de cancers radioinduits dans l’intervalle 0-100 mSv comme proportionnel à la dose (modèle linéaire sans seuil) ou au contraire comme négligeable (modèle non linéaire avec seuil) ? Un débat s’est engagé entre scientifiques…

Sommes-nous tous égaux face aux radiations ?

L’identification puis la prise en compte du facteur individuel sera l’un des enjeux majeurs de la radiobiologie de demain. Alors qu’elle avait déjà été évoquée par les pionniers de l’atome au début du XXème siècle, l’usage de traitements anti-cancer standardisés a un peu fait oublier l’évidence expérimentale et clinique que « nous ne sommes pas égaux face aux radiations ». L’étude des complications survenues après radiothérapie a notamment montré qu’il existait des individus dits « radiosensibles » et d’autres présentant à l’inverse un seuil de tolérance plus élevé que la moyenne. A dose égale, le nombre de cellules détruites sera donc plus important chez certaines personnes et les effets plus rapides et intenses. En particulier, des cassures double-brin de l’ADN produites par les radiaitons peuvent être toutes réparées au bout de 24 h chez un individu considéré comme "radiorésistant" alors que des patients présentant des complications se distinguent par l’absence de réparation de quelques-unes.

Les règles de la radioprotection proposées par la Commission Internationale de Protection Radiologique (CIPR) ne tiennent pas encore compte de la susceptibilité individuelle aux radiations alors que celle-ci peut constituer un facteur plus important que le type de radiation ou l’organe irradié. Les marqueurs et les tests ne sont toutefois pas encore assez puissants pour détecter les différences inter-individuelles à ce jour ; les progrès technologiques de génomique et d’analyse de masse ainsi que le développement des recherches sur les effets biologiques des faibles doses de radiation feront sans nulle doute changer cette position dans les années à venir mais posera de nombreux problèmes pratiques et éthiques.

Peut-on se protéger d’une contamination par des particules radioactives ?

Il existe deux types d’exposition aux radiations :

- une irradiation externe produit par un irradiateur ou une source de radioactivité qui irradie de l’extérieur le corps entier ou un organe,
- une contamination interne qui, à travers la peau (cutanée, transcutanée), les poumons (par inhalation) ou les aliments (par ingestion) apporte dans le corps la source d’irradiation (dans ce cas un radionucléide).

La protection dépendra donc du type d’exposition et du type de radiation mais c’est la règle D.A.T.E qui est le plus évoquée
- Distance : le rayonnement diminue avec l’inverse du carré de la distance homme-source (difficilement applicable pour une contamination interne)
- Activité : réduire l’activité de la source notamment par des dilutions (notamment applicable pour une contamination interne)
- Temps : minimiser le temps d’exposition (voir plus haut)
- Ecran : dans le cas d’une irradiation externe, des protections dans différents matériaux dépendant du type de radiation peuvent être utilisés (plomb, béton, etc…). Notons cependant qu’un rayonnement secondaire peut être émis par l’écran lui-même (exemple des astronautes dans leur vaisseau spatial) et représenter une source d’irradiation non négligeable.

En plus de cette règle facile à retenir, notons des mesures à prendre spécifiques de certaines sources d’irradiation :
- pour le radon, aérer régulièrement les pièces
- pour l’iode radioactif, saturer la thyroïde par des pastilles d’iodure de potassium mais seulement après émission d’un message national (saturer sans contamination ou trop tardivement est inefficace et peut être dangereux).

Des substances dites "radioprotectrices" peuvent être utilisés dans le cadre d’une radiothérapie anti-cancéreuse pour mieux protéger les tissus sains et limiter les complications. Elles consistent à réduire le stress oxydatif induit par les radiations mais ne sont toutefois pas adaptées à tous les cas de patients ou de traitements et doivent être utilisées seulement dans un cadre médical précis.

Retour à la liste des actualités "Société"
^ Haut de page
Voir Modifier Créer ici
Google+ Linkedin Viadeo Twitter Facebook